Pasar al contenido principal

Home

  • Instituto de Microelectrónica de Barcelona (IMB-CNM)
  • Sala Blanca de Micro y Nanofabricación
  • OneWeb finaliza su 5º lanzamiento al espacio equipado con fotodiodos de nuestra Sala Blanca
  • Un proyecto internacional para mejorar la fiabilidad de los componentes electrónicos

Bienvenidos al Instituto de Microelectrónica de Barcelona IMB-CNM-CSIC

El Instituto de Microelectrónica de Barcelona (IMB-CNM-CSIC) es un centro de investigación dedicado al desarrollo de nuevas micro y nanotecnologías, Componentes y Sistemas. El centro es líder en la aplicación de estas tecnologías para resolver los retos sociales y está alineado con los objetivos de desarrollo sostenible.

La investigación IMB-CNM se centra en la investigación básica y desarrollo aplicado en micro y nanotecnologías, componentes y sistemas. Sus líneas de investigación incluyen toda la cadena de valor de los componentes de detección, potencia y accionamiento, transmisión de señal y su aplicación a la salud y el bienestar de las personas, y al control de las condiciones ambientales para una gestión eficiente de la energía.

Noticias

Proyectos |
21 Abr 2021

La Sala Blanca del Centro Nacional de Microelectrónica está ampliando sus equipamientos con cofinanciación de fondos FEDER

En marcha dos convenios entre el Ministerio de Ciencia e Innovación y el CSIC para la aplicación de fondos europeos, el 50% de los cuales financiados con fondos del Fondo Europeo de Desarrollo Regional (FEDER), con el objeto de modernizar, consolidar, ampliar y evolucionar las infraestructuras para las micro y nanotecnologías de la Sala Blanca.

Highlights

aom
Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs
M. A. Hernández‐Rodríguez, et al.

The remarkable advances in molecular logic reported in the last decade demonstrate the potential of luminescent molecules for logical operations, a paradigm-changing concerning silicon-based electronics. Trivalent lanthanide (Ln3+) ions, with their characteristic narrow line emissions, long-lived excited states, and photostability under illumination, may improve the state-of-the-art molecular logical devices. Here, the use of monolithic silicon-based structures incorporating Ln3+ complexes for performing logical functions is reported. Contrary to chemical inputs, physical inputs may enable the future concatenation of distinct logical functions and reuse of the logical devices, a clear step forward toward input–output homogeneity that is precluding the integration of nowadays molecular logic devices.
Adv. Optical Mater. 2020, 2000312.

nanomaterials
Internalization and Viability Studies of Suspended Nanowire Silicon Chips in HeLa Cells
Sara Duran, et al.

Here, we propose the integration of silicon nanowires on cell internalizable chips in order to combine the functional features of both approaches. The cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved however, important cell behavior differences were observed. The first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.
Nanomaterials 2020, 10(5), 893

nat-materials
Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development
Marta Duch, et al.

We identify a program of forces and changes to the cytoplasmic mechanical properties required for mouse embryo development from fertilization to the first cell division. Injected, fully internalized chips responded to sperm decondensation and recondensation, and subsequent device behavior suggested a model for pronuclear convergence based on a gradient of effective cytoplasmic stiffness. The nanodevices reported reduced cytoplasmic mechanical activity during chromosome alignment and indicated that cytoplasmic stiffening occurred during embryo elongation, followed by rapid cytoplasmic softening during cell division. Forces greater than those inside muscle cells were detected. These results suggest that intracellular forces are part of a concerted program that is necessary for development at the origin of a new embryonic life.
Nat. Mater. (2020)

Síguenos en Twitter

El IMB-CNM en 2 minutos
https://www.youtube.com/watch?v=oo2hsBED-gQ