Pasar al contenido principal

Home

  • The 2025 Doctoral INPhINIT fellowships call is now open
  • El IMB-CNM participa en la nueva línea piloto europea para la integración heterogénea
  • ¡Entra en la Sala Blanca de Micro y Nanofabricación!
  • ¡Únete al IMB-CNM!
  • Visitas guiadas del IMB-CNM

Noticias

Institucional |
16 Dic 2024

El IMB-CNM participa en la nueva línea piloto europea para liderar la integración heterogénea y el encapsulado avanzado de componentes y sistemas electrónicos

El Instituto de Microelectrónica de Barcelona del CSIC (IMB-CNM-CSIC) es la única institución española dentro del consorcio, cuyo objetivo es fortalecer la soberanía tecnológica europea mejorando las cadenas de suministro de semiconductores. Con más de 730 millones de euros durante los próximos cuatro años y medio, la Línea Piloto de Encapsulado Avanzado e Integración Heterogénea para Componentes y Sistemas Electrónicos es una de las más dotadas por la Empresa Común Chips (Chips JU) y por las autoridades de financiación nacionales de España, Austria, Bélgica, Finlandia, Francia, Alemania, Grecia y Portugal, a través de la iniciativa “Chips for Europe”.

Highlights

Una mano sostiene la batería adhesiva delante de un contenedor azul para reciclar papel y cartón. Crédito: Carles Tortosa y Marina Navarro.
Designed-by-purpose power sources: a cardboard primary battery for smart packaging
Marina Navarro-Segarra, Omar A. Ibrahim, Iñigo Martin-Fernandez, Carles Tortosa, Joseba M. Ormaetxea, Manuel Baumann, Marcel Weil, Juan Pablo Esquivel

Internet-of-Things (IoT) is considered one of the primary enablers of the next digital transformation wave. Generating and exchanging data between the increasing number of delocalized sensors comes with the need for high-performance portable power sources that also meet environmental and social responsibility standards. This article presents a portable power source to meet the energy requirements of IoT devices in the smart packaging sector that has been designed-by-purpose in an ecologically benign way since the early development stage. To minimize the environmental impact throughout its life cycle, the battery follows the value chain of paper and cardboard, from material sourcing to disposability. Naturally abundant materials, such as cellulose derivates and alginate biopolymers, are prioritized to create the separator and contain the redox species. Manufacturing techniques, easily implementable in the packaging industry, are used to fabricate an adhesive label-like battery (based on layered components) and engrave the current collectors, via laser-induced graphene. The prototype's energy adaptation capability is demonstrated by directly powering two applications particularly appealing for smart packaging, i.e., a printed electrochromic display and a wireless tracker device. Once depleted, the battery is compatible with paper and cardboard recycling standardized processes. The reconceptualization of the whole battery life cycle leads to the generation of a disruptive power source concept that aims to be an enabler of a sustainable digitalization of society.

Designed-by-purpose power sources: a cardboard primary battery for smart packaging. Energy and Environmental Science. DOI: 10.1039/D4EE00306C

DLP-Flow Photochemical Printer scheme. Advanced Materials
Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices
Carlos Carbonell, Mercedes Linares-Moreau, Sergey M. Borisov, Paolo Falcaro

Patterning Metal-Organic Frameworks (MOFs) is essential for their use in sensing, electronics, photonics, and encryption technologies. However, current lithography methods are limited in their ability to pattern more than two MOFs, hindering the potential for creating advanced multifunctional surfaces. Additionally, balancing design flexibility, simplicity, and cost often results in compromises. This study addresses these challenges by combining Digital-Light Processing (DLP) with a capillary-assisted stop-flow system to enable multimaterial MOF patterning. It demonstrates the desktop fabrication of multiplexed arbitrary micropatterns across cm-scale areas while preserving the MOF's pore accessibility. The ink, consisting of a MOF crystal suspension in a low volatile solvent, a mixture of high molecular weight oligomers, and a photoinitiator, is confined by capillarity in the DLP projection area and quickly exchanged using syringe pumps. The versatility of this method is demonstrated by the direct printing of a ZIF-8-based luminescent oxygen sensor, a 5-component dynamic information concealment method, and a PCN-224-based colorimetric sensor for amines, covering disparate pore and analyte sizes. The multi-MOF capabilities, simplicity, and accessibility of this strategy pave the way for the facile exploration of MOF materials across a wide range of applications, with the potential to significantly accelerate the design-to-application cycle of MOF-based devices.

 C. Carbonell, M. Linares-Moreau, S. M. Borisov, P. Falcaro, Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices. Adv. Mater. 2024, 2408770. DOI: 10.1002/adma.202408770