Pasar al contenido principal

Home

  • Instituto de Microelectrónica de Barcelona (IMB-CNM)
  • ¿Quieres trabajar en el IMB-CNM?
  • Nuevo dispositivo portátil para la detección automatizada de radón
  • OneWeb lanzará un nuevo lote de satélites con 136 fotodiodos de silicio

Noticias

Agenda

Highlights

Ultrabroadband light absorbing Fe/polymer flexible metamaterial for soft opto-mechanical devices
Ultrabroadband light absorbing Fe/polymer flexible metamaterial for soft opto-mechanical devices
Güell-Grau, P., Pi, F., Villa, R., Nogués, J., Alvarez, M., Sepúlveda, B.

Ultrabroadband light absorbers are attracting increasing interest for applications in energy harvesting, photodetection, self-regulated devices or soft robotics. The developed metamaterial, composed of a nanostructured Fe layer mechanically coupled to a thin polydimethylsiloxane (PDMS) film, shows unprecedented ultrabroadband and angle-independent optical absorption (averaging 84% within 300–18000 nm). The excellent photothermal efficiency and large thermal-expansion mismatch of the metamaterial is efficiently transformed into large mechanical deflections, which we exploit to show an artificial iris that self-regulates the transmitted light power from the ultraviolet to the long-wave infrared, an untethered light-controlled mechanical gripper and a light-triggered electrical switch.

Applied Materials Today, Volume 23, 2021, 101052, ISSN 2352-9407, https://doi.org/10.1016/j.apmt.2021.101052

Detail of the microfluidic system, the tissue barrier and the hydrogel
Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms
Vera, D., García-Díaz, M., Torras, N., Álvarez, M., Villa, R., Martinez, E.

Tissue barriers play a crucial role in human physiology by establishing tissue compartmentalization and regulating organ homeostasis. Combining hydrogels with microfluidics technology provides unique opportunities to better recreate in vitro the tissue barrier models including the cellular components and the functionality of the in vivo tissues. Such platforms have the potential of greatly improving the predictive capacities of the in vitro systems in applications such as drug development, or disease modeling. Nevertheless, their development is not without challenges in their microfabrication. In this review, we will discuss the recent advances driving the fabrication of hydrogel microfluidic platforms and their applications in multiple tissue barrier models.

ACS Appl. Mater. Interfaces 2021, 13, 12, 13920–13933. https://doi.org/10.1021/acsami.0c21573

Síguenos en Twitter

El IMB-CNM en 2 minutos
https://www.youtube.com/watch?v=oo2hsBED-gQ