Vés al contingut


  • Institut de Microelectrònica de Barcelona (IMB-CNM)
  • Sala Blanca Integrada de Micro i Nanofabricació
  • Micro i Nanotecnologies per als reptes socials
  • Institut de Microelectrònica de Barcelona (IMB-CNM)

Benvingut a l'Institut de Microelectrònica de Barcelona IMB-CNM-CSIC

L'Institut de Microelectrònica de Barcelona (IMB-CNM-CSIC) és un centre de recerca dedicat al desenvolupament de nous components i sistemes de micro i nanotecnologia. És un centre líder en l'aplicació d'aquestes tecnologies per resoldre els reptes socials i està alineat amb els objectius de desenvolupament sostenible.

La investigació IMB-CNM se centra en recerca bàsica i desenvolupament aplicat en micro i nanotecnologies, components i sistemes. Les seves línies de recerca inclouen tota la cadena de valor dels components de detecció, potència i accionament, transmissió de senyal i la seva aplicació a la salut i el benestar de les persones, i al control de les condicions ambientals per una gestió eficient de l’energia.



Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs
M. A. Hernández‐Rodríguez, et al.

The remarkable advances in molecular logic reported in the last decade demonstrate the potential of luminescent molecules for logical operations, a paradigm-changing concerning silicon-based electronics. Trivalent lanthanide (Ln3+) ions, with their characteristic narrow line emissions, long-lived excited states, and photostability under illumination, may improve the state-of-the-art molecular logical devices. Here, the use of monolithic silicon-based structures incorporating Ln3+ complexes for performing logical functions is reported. Contrary to chemical inputs, physical inputs may enable the future concatenation of distinct logical functions and reuse of the logical devices, a clear step forward toward input–output homogeneity that is precluding the integration of nowadays molecular logic devices.
Adv. Optical Mater. 2020, 2000312.

Internalization and Viability Studies of Suspended Nanowire Silicon Chips in HeLa Cells
Sara Duran, et al.

Here, we propose the integration of silicon nanowires on cell internalizable chips in order to combine the functional features of both approaches. The cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved however, important cell behavior differences were observed. The first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.
Nanomaterials 2020, 10(5), 893

Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development
Marta Duch, et al.

We identify a program of forces and changes to the cytoplasmic mechanical properties required for mouse embryo development from fertilization to the first cell division. Injected, fully internalized chips responded to sperm decondensation and recondensation, and subsequent device behavior suggested a model for pronuclear convergence based on a gradient of effective cytoplasmic stiffness. The nanodevices reported reduced cytoplasmic mechanical activity during chromosome alignment and indicated that cytoplasmic stiffening occurred during embryo elongation, followed by rapid cytoplasmic softening during cell division. Forces greater than those inside muscle cells were detected. These results suggest that intracellular forces are part of a concerted program that is necessary for development at the origin of a new embryonic life.
Nat. Mater. (2020)

Segueix-nos a twitter

L'IMB-CNM en 2 minuts