Skip to main content

Ultrabroadband light absorbing Fe/polymer flexible metamaterial for soft opto-mechanical devices

Ultrabroadband light absorbers are attracting increasing interest for applications in energy harvesting, photodetection, self-regulated devices or soft robotics. The developed metamaterial, composed of a nanostructured Fe layer mechanically coupled to a thin polydimethylsiloxane (PDMS) film, shows unprecedented ultrabroadband and angle-independent optical absorption (averaging 84% within 300–18000 nm). The excellent photothermal efficiency and large thermal-expansion mismatch of the metamaterial is efficiently transformed into large mechanical deflections, which we exploit to show an artificial iris that self-regulates the transmitted light power from the ultraviolet to the long-wave infrared, an untethered light-controlled mechanical gripper and a light-triggered electrical switch.

Applied Materials Today, Volume 23, 2021, 101052, ISSN 2352-9407, https://doi.org/10.1016/j.apmt.2021.101052

Güell-Grau, P., Pi, F., Villa, R., Nogués, J., Alvarez, M., Sepúlveda, B.
Year
2021
Ultrabroadband light absorbing Fe/polymer flexible metamaterial for soft opto-mechanical devices