Skip to main content

Home

  • Institute of Microelectronics of Barcelona (IMB-CNM)
  • Integrated Micro and Nanofabrication Clean Room
  • Micro and Nanotechnologies for the Societal Challenges
  • Institute of Microelectronics of Barcelona (IMB-CNM)

Welcome to the Institute of Microelectronics of Barcelona IMB-CNM-CSIC

The Barcelona Institute of Microelectronics (IMB-CNM), CSIC, is a well-positioned research center in the development of new Micro, Nano Technologies, Components and Systems. This center is a leader in the application of such technologies to solve social challenges and is aligned with the sustainable development objectives.

IMB-CNM research focuses on basic and applied research and development in micro and nanotechnologies, components and systems. Its lines of research include the entire value chain from the components of detection, power, and actuation, signal transmission and its application to the health and well-being of people, help control environmental conditions, and save and improve efficient management of energy.

News

22 Sep 2020

La investigadora del CSIC Neus Sabaté, galardonada en los Premios de Física Real Sociedad Española de Física

La investigadora del Instituto de Microelectrónica de Barcelona del CSIC, ha sido galardonada en la categoría de Física, Innovación y Tecnología. El jurado ha destacado “su visión pionera y su gran creatividad en el campo de las baterías biodegradables”.

10 Jul 2020

CSIC researcher Neus Sabaté, candidate for the Women Innovators 2020 award

Twenty-one of the most talented and inspiring women entrepreneurs in Europe and beyond are in the shortlist for the EU Prize for Women Innovators 2020. The prize celebrates the outstanding achievements of female entrepreneurs running innovative companies and is funded by the EU’s Horizon 2020 programme for research and innovation.

Agenda

Highlights

Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development
Marta Duch, et al.

We identify a program of forces and changes to the cytoplasmic mechanical properties required for mouse embryo development from fertilization to the first cell division. Injected, fully internalized chips responded to sperm decondensation and recondensation, and subsequent device behavior suggested a model for pronuclear convergence based on a gradient of effective cytoplasmic stiffness. The nanodevices reported reduced cytoplasmic mechanical activity during chromosome alignment and indicated that cytoplasmic stiffening occurred during embryo elongation, followed by rapid cytoplasmic softening during cell division. Forces greater than those inside muscle cells were detected. These results suggest that intracellular forces are part of a concerted program that is necessary for development at the origin of a new embryonic life.
Nat. Mater. (2020)

Internalization and Viability Studies of Suspended Nanowire Silicon Chips in HeLa Cells
Sara Duran, et al.

Here, we propose the integration of silicon nanowires on cell internalizable chips in order to combine the functional features of both approaches. The cellular uptake in HeLa cells of silicon 3 µm × 3 µm nanowire-based chips, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved however, important cell behavior differences were observed. The first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems.
Nanomaterials 2020, 10(5), 893

Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs
M. A. Hernández‐Rodríguez, et al.

The remarkable advances in molecular logic reported in the last decade demonstrate the potential of luminescent molecules for logical operations, a paradigm-changing concerning silicon-based electronics. Trivalent lanthanide (Ln3+) ions, with their characteristic narrow line emissions, long-lived excited states, and photostability under illumination, may improve the state-of-the-art molecular logical devices. Here, the use of monolithic silicon-based structures incorporating Ln3+ complexes for performing logical functions is reported. Contrary to chemical inputs, physical inputs may enable the future concatenation of distinct logical functions and reuse of the logical devices, a clear step forward toward input–output homogeneity that is precluding the integration of nowadays molecular logic devices.
Adv. Optical Mater. 2020, 2000312.

Follow us on Twitter

The IMB-CNM in 2 minutes
https://www.youtube.com/watch?v=DiKq0sdXRp4&t=2s