A Non-intrusive and low-cost approach to extract Figures of Merit in any part of a high-frequency electronic device

CSIC have developed a method to extract figures of merit (FoM) from high-frequency operatingdevices (such as both low-noise and power amplifiers or mixers), with a local, non-intrusive, low-cost approach.

Industrial partners from semiconductor industry addressed to telecommunication and radar application sectors (particularly focused on amplifiers and mixer systems developers), as well as thermographic systems manufacturers and/or distributors, are being sought to exploit the existing know-how through a licence or service agreement.

Non-intrusive, local and low-cost method to extract figures of merit in high-frequency operating-devices

In the state-of-the-art, the temperature in the different points of a highfrequency electronic device is determined by an invasive way (i.e. external or internal sensors). The approach proposed bases on the post-processing of thermal images obtained when the device is under working conditions (electrically and thermally) by using a lock-in thermographic system and heterodynally driving the inspected device to down convert high frequency electrical information to a lower frequency thermal field.

In this regard, the developed non-intrusive procedure locally monitors the frequency response of any electrical parameter (i.e., current, voltage or power consumption) in any desired part of the electronic device. Thereby, a better knowledge of their behavior during operating conditions (both electrical and thermal) permits to optimize the design process and verify their fabrication process in a more reliable and robust manner.

Main innovations and advantages

- Non-invasive and non-destructive electro-thermal spatial resolved technique (6 microns spatial resolution).
- Local and quantitative monitoring of current, voltage or power consumption of any active or passive component contained within an Integrated Circuit (IC).
- Useful for debugging in complex IC's for RF microwave and millimeter applications.
- Very suitable as quality control system for diagnostics of Radio Frequency, microwave and millimeter wave devices, such as low-noise and power amplifiers or mixers.
- Of easy implementation in any other imaging temperature sensing system such as thermoreflectance, liquid-crystal thermography, among others.
- This method can be extended to power devices design and debugging.

Fig.1) Frequency versus power gain of power amplifier

Fig 2) Potential applications of the technology

Patent Status

Patent application filed

For more information, please contact:

Isabel Gavilanes-Pérez, PhD.

Deputy Vice-Presidency for Knowledge Transfer.

Spanish National Research Council (CSIC)

Tel.: + 34 93 594 7700

E-mail: isabel.gavilanes@csic.es

