This website uses its own and third-party cookies for its operation, to maintain the session and to personalize the user's experience. For more information about the cookies used consult our cookies policy

Institute of Microelectronics of Barcelona IMB-CNM   

IMB-CNM Facebook channel IMB-CNM Twitter channel IMB-CNM Linkedin channel IMB-CNM Youtube channel IMB-CNM Instagram channel IMB-CNM Pinterest channel Login to IMB-CNM Intranet

Impedimetric transducers based on interdigitated electrode arrays for bacterial detection; S.Brosel-Oliu et al.; A review, Anal.Chim.Acta, 2019, vol.1088, pp. 1-19. This review is focused on publications dealing with interdigitated electrodes as a transducer unit and different bacteria detection systems using these devices. The first part of the review deals with the impedance technique principles, paying special attention to the use of interdigitated electrodes, while the main part of this work is focused on applications ranging from bacterial growth monitoring to label-free specific bacteria detection.

Power module electronics in HEV/EV applications: New trends in wide ban-dgap semiconductor technologies and design aspects; A. Matallana et al.; Renewable and Sustainable Energy Reviews, vol. 113, October 2019. This paper presents an in-deep review of the state of the art concerning power modules, identifying the electrical requirements for the modules and the power conversion topologies that will best suit future HEV/EV drives. Current wide band-gap (WBG) technologies such as SiC and GaN, are reviewed and, after a market analysis, the most suitable power semiconductor devices are highlighted. Among them, it can be concluded that JBS diodes and MOSFETs are the most adequate for this application, because they can substitute traditional Si FRD diodes and Si IGBTs, providing lower power losses and higher operation temperatures. The migration from Si IGBTs to the aforementioned technologies would be simpler than expected, as the same firing circuitry (with minor modifications) can be reused. The paper, also focuses on practical design aspects of the module, such as optimum WBG die parallelization, placement and ceramic substrate routing. This work has been developed in a collaboration between the Teknologia Elektronikoa Saila - Bilboko Ingenieritza Goi Eskola Teknikoa - UPV/EHU and the Power Devices and Systems Group from IMB-CNM(CSIC).

Growth Monitoring With Submonolayer Sensitivity Via Real-Time Thermal-Conductance Measurements; P. Ferrando-Villalba et al.; Phys. Rev. Applied 12, 014007. Growth monitoring during the early stages of vapor deposition is of prime importance to understand the growth process, the microstructure, and thus the overall layer properties. We demonstrate that phonons can be used as an extremely sensitive probe to monitor the real-time evolution of film microstructure during growth. For that purpose, a silicon nitride membrane-based sensor is fabricated to measure the in-plane thermal conductivity of thin film samples. Operating with the 3ω-Völklein method at low frequencies, the sensor shows an exceptional resolution down to Δ(κ⋅t)=0.065W/mKnm, enabling accurate measurements even in poor conductive samples.

Electric Field Gradients and Bipolar Electrochemistry effects on Neural Growth: A finite element study on immersed electroactive conducting electrode materials; Ll. Abad et al.; Electrochimica Acta. Implantable electrodes act with direct electrical contact although recent work has shown that electrostimulation is also possible through non-contact wireless settings, through the generation of dipoles at the borders of the material by bipolar electrochemistry. Finite element studies shown here with the same configuration that the experimental processes described, evidence voltage profiles in qualitative agreement with known bipolar effects, although with a clear difference between intercalation materials and metals. These observations may explain the differences in neural cell growth observed for various substrate material.

Mimicking the Spike-Timing dependent plasticity in HfO2-based memristors at multiple times scales; M. Maestro-Izquierdo et al.; Microelectronic Engineering 215 (2019) 111014. TiN/Ti/HfO2/W memristors have been investigated to mimic the spike-time dependent plasticity (STDP) of biological synapses at multiple time scales. For this purpose, a smart software tool has been implemented to control the instrumentation and to perform a dedicated ultra-fast pulsed characterization. Different time scales, from tens of milliseconds to hundreds of nanoseconds, have been explored to emulate the STDP learning rule in electronic synapses. The impact of such times on the synaptic weight potentiation and depression characteristics has also been discussed.

Microfluidic Modules with Integrated Solid-State Sensors for Reconfigurable Miniaturized Analysis Systems; Pablo Giménez-Gómez et al.; ACS Omega, 2019, 4 (4), pp 6192–6198. Modular microfluidic systems based on a new magnetic clamping approach, which enables both interconnection of microfluidic modules and reversible integration of solid-state sensors, is presented in this work. The system layout allows the easy assessment of the system fluidic performance by using optically transparent and low cost polymeric materials.

Full Review William Hill www.wbetting.co.uk