Intracellular NEMS

Jaume Esteve, Marta Duch, Rodrigo Gómez and José Antonio Plaza
Micro and Nano Tools Group

Institut de Microelectrònica de Barcelona IMB-CNM (CSIC)
Campus UAB, 08193-Bellaterra (Barcelona)
Partners

NEMS – MEMS technology

Cell biology and embryos

Biochemical functionalization

UAB

UAB – Dept. Cell Biology
Prof. Carme Nogués group

CIB-CSIC

Prof. Teresa Suárez group

UB - IBEC

Prof. Lluïsa Pérez-Garcia group
Micro- and Nanotechnologies in Cell Biology

Extracellular Tools

MEMS/Microsystems

- Devices bigger than cells
- Technology based on semiconductor industries
 - High control of the dimensions
 - High control of geometries (3D devices)
 - A large variety of materials: silicon, silicon oxide, silicon nitride, gold, platinum, aluminum, chromium, titanium, polymers...
 - Sensors or actuators: mechanical, biochemical, electrical, magnetic, etc

Intracellular Tools

Micro-Nanoparticles

- Devices smaller than cells
- Produce by chemical synthesis
- They can be internalized inside cells
- Drug delivery
- Hyperthermia
- Image contrast

NEMS/Nanosystems

- NEMS/Nanosystems smaller than cells
- Technology based on semiconductor industries
- They can be internalized inside cells
Suspended NEMS for intracellular applications

High density of small devices in suspension

- Fabrication technology
- Manipulation
- Cell internalization
- Cell viability
- Interrogation / Measurement
- Applications
Is it possible to produce and manipulate NEMS in suspension as nanoparticles?

Semiconductor based technologies

- Defined by micro and nanolithography
- Fully release of devices by surface Micromachining (HF vapour)
Is it possible to produce and manipulate NEMS in suspension as nanoparticles?

- Collect nanodevices
- Disperse (alcohol, PBS, etc)
- High concentration
- Cleaning
- Sterilization
Is it possible to produce and manipulate NEMS in suspension as nanoparticles?

HF vapour surface micromachining

- High yield
- Simple and standard technology

- High limitation in materials
- Materials degradation
- Losses during manipulation

Si, Poly-Si, Au, Pt
Is it possible to produce and manipulate NEMS in suspension as nanoparticles?

HF vapour surface micromachining

- High yield
- Simple and standard technology
- High limitation in materials
- Loses during manipulation

New release technology
Mechanical release and collection

- Very high yield (with no losses during manipulation)
- Compatible with all materials
- No damage of biofunctionalization
- More complex technology

Patent: P201430864
Multifunctional microdevices

“Universal platform”
Is it possible to internalize NEMS inside living cells?

Lipofection: HeLa cells

Phagocytosis: human macrophages

Microinjection: Mouse Embryos

Nanomachining by Focused Ion Beam of a human macrophage with a internalized chip.
Is it possible to internalize NEMS inside living cells?

Polysilicon microparticle phagocyted by a macrophage
NEMS interact with living cells? Intracellular biochemical sensors

Chemical functionalization

Polysilicon

Surface activation

Amine modification

FDA derivatization

OH

OH

OH

Si NH₂

O

O

O

O

O

O

O

Polysilicon

Funtionalized silicon microchips with diacetate of fluorescenine (CFDA) interact with the cell cytoplasm in HeLa cells show intracellular ICCs with green fluorescence

Cell viability?

Interrogation / Measurement?

- Optical
- Magnetic
- Electrical
- RF
- Ultrasounds
- ...

No direct access
Interrogation / Measurement?

- Optical
- Magnetic
- Electrical
- RF
- Ultrasounds
- ...

In vitro applications

In combination with confocal microscopy

Confocal laser scanning microscopy (CLSM):

- standard technology in biology
- high capabilities
- high resolution
- light sources
- powerful analysis
- some flexibility

Resolució: 200 nm

Làsers:

- Diode UV 405 nm
- Argó multilinial 458, 476, 488, 496 and 514 nm
- DPSS 561 nm
- Heli-Neó 594 nm
- Heli-Neó 633 nm
- Titani-Safir-IR MaiTai broadband (710-990 nm)
Single-cell Barcodes
Technology offers precise control of chip-geometry

Intracellular Barcodes for single cell tracking and labeling

Pentagonal bits
Start marker

Human macrophage

Single-cell Barcodes

Intracellular Barcodes for single cell tracking and labeling

Cell Viability

Daily movements of encoded macrophages during 10 days.
Direct tagging of mouse embryos

- Microinjection of the barcodes into the perivitelline space
- Embryo freezing and thawing

In vitro development of embryos microinjected with different types of polysilicon barcodes into their perivitelline space

Adhesion of barcodes to the embryo surface:
(A) Hatched blastocyst
(B) Corresponding empty zona pellucida,
Direct embryo tagging and identification

- WGA biofunctionalized barcodes (Immobilization of lectins using self-assembled monolayers)
- Attachment of barcodes to the ZP outer surface

Barcode release after blastocyst hatching

In vitro development of tagged embryos and identification process

Assisted reproduction technologies

- Barcode tagging of human oocytes and embryos to prevent mix-ups
- Identification of bovine embryos

Intracytoplasmic sham injection of tagged oocytes

Biofunctionalization of polysilicon barcodes

The Idea

- Chips made by standard semiconductor technologies
- Integrate a mechanical sensor and an optical transducer (Intracellular NOMS)
- Internalized inside living HeLa cells

Gómez-Martínez, R. et al., “Silicon chips detect intracellular pressure changes in living cells”
Nature Nanotechnology, Volume 8, Issue 7, July 2013, Pages 517-521
Design

The sensing principle

Small enough to be internalized by cells
Nanometric-thick mechanical layers

\[D = \frac{E t_{memb}^3}{1-v^2 \cdot 12} \]

\[\text{Displ}_{memb} = 0.00126 \frac{a^4}{D} P \]
Design

The transduction

Compatible with one of the standard techniques for cell biology studies

Confocal Laser Scanning Microscopy (CSLM)

Fluorescence dyes

Fabry-Perot Resonator

Reflected light
Intracellular silicon pressure sensor

Design

SEM image

Transmitted light image
Chip Fabrication

- Polysilicon as structural material (25 nm, 25 nm, 50 nm)
- Silicon oxide as sacrificial layer (100 nm, 300 nm, 30 nm)
 - Etching selectivity (RIE, HF vapors etching)
 - Polysilicon hermeticity

Sequence of steps for the fabrication of the chips.

SEM images of the fabricated chips.
Chip Characterization (Pressure)

Fluorescence microscopy

Fluorescence Dyes

Emission

Excitation

Fluorescence Dyes

Emission

λ

λ
The tilt

\[\lambda = 514 \text{ nm} \]

\[\lambda = 594 \text{ nm} \]
Chip internalization inside Human HeLa Cells

Lipofection: a technique used to introduce genetic material into a cell by means of liposomes, which are vesicles that can easily merge with the cell membrane since they are both made of a phospholipid bilayer.

Cell viability

Area ratio = ~10% Volume ratio = ~0.2%

CellTracker Green
MitoTracker Red (bio-dyes)

Nile Red and the vital probe Calcein-AM (green)
MitoTracker red and the vital probe Calcein-AM (green) 24h
Mitochondrial potential-dependent probe DiOC
Experimental set-up

Pressure chamber / Cell culture chamber

Confocal Laser Scanning Microscope

Pressure calibration
Pressure transmission inside the cell

In air

Reflected intensity

Reflected intensity

Inside a cell

Reflected intensity %
Osmotic Shock

Chips inside a HeLa cell during an osmotic shock

Extrapolated I for the minimum reflection of chips in the cytosol and inside the vacuole before and after an osmotic shock, showing a non-significant shift of the reflected spectrum after the shock.
Conclusions

- Intracellular NEMS could be powerful devices
 - Technology very flexible
 - Opens new applications areas
 - Really multifunctional (mechanical, chemical sensing, actuation, therapies...)
 - Combination of intra and extracellular NEMS
 - New interrogation principles

- Cell viability ... but how affects measured parameters?
ACKNOWLEDGMENTS:

Chips fabrication: Clean-room staff of IMB-CNM

IM-CNM (CSIC): S. Duran, N. Torras,

Image processing assistance: A. Bosch (CCiT-UB))

CLSM experimental assistance: M. Calvo (CCiT-UB)), M.T. Seisdedos (CIB), J. Monteagudo (Leica Microsystems S.L.), D. Megias (CMU-CNIO)

UAB: C. Nogués, Ll. Barrios, E. Ibáñez. S. Novo, E. Fernández-Rojas

UB: Ll. Pérez-García, O. Penon, J.P. Agusil

CIB (CSIC): T. Suárez, A. M. Hernández-Pinto, P. Vázquez, E.J. de la Rosa

FUNDING:

- This work was supported by the Spanish projects TEC2009-07687-EXPLORA, TEC2011-29140-C03-01 and SAF2010-21879-C02-01.